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1. INTRODUCTION

The pantograph equation is a special type of functional differential
equations with pro-portional delay. It arises in rather different fields of
pure and applied mathematics, such as electrodynamics, control systems,
number theory, probability, and quantum mechanics. Many researchers
have studied the pantograph-type delay differential equation using
analytical and numerical techniques [2, 10, 11, 12].

Fractional calculus is applied in different directions of physics,
mathematical biology, fluid mechanics, electrochemistry, signal processing,
viscoelasticity, and finance and in many more. In the branch of fractional
calculus, fractional derivatives and fractional integrals are important



136 D. Vivek, E.M. Elsayed and K. Kanagarajan

aspects. Recently, many researchers and scientists have analyzed issues in
this special branch [6, 7, 8, 9]; The aim of this paper is to study the existence
and global attractivity of solutions for a pantograph equation of fractional
order. The main technique used in our considerations is the measures of
noncompactness and a fixed point theorem of generalized Ascoli-Arzela
theorem. Our investigations will be situated in the Banach space of real
functions which are defined, continuous, and bounded. The work on the
attractivity of solutions for fractional differential equations in Banach space
was initiated in [5]. Motivated by this work, here we study the question of
attractivity of solutions for a class of pantograph equations in the sense of
y-type Riemann-Liouville (R-L) fractional derivative given by

{(LD“:‘"V)(t) = f(t, y(t), y(rt)), te (0, ), )
(1"y)(0) = Yo, (1)
where 0 <A <1, LD*V is y-type R-L fractional derivative of order a € (0, 1),
I'-v is y-type R-L fractional integral of order 1 —a, f: [0, 0) x Y x Y — Y'is

a continuous function satisfying some hypotheses and y, is an element of
the Banach space Y.

The development of this article is as follows. In Section 2, the y-type
fractional derivative is discussed. In Section 3, we estabilish sufficient
conditions for the global attractivity for solutions of problem (1).

2. PREREQUISITES

In the present part, we give some definitions and properties of the fractional
derivative as suggested by [1].

Leta € (0, 1)and x € L' ([0, ), Y). The y-type R-L integral is defined by

(I x(t) = g, (£) *,, x(t) = [s 8.t =5)x(s)y'(s)ds, t >0,
where * denotes the convolution,

) o)
()
For x € C([0, »), Y), the y-type R-L fractional derivative is defined by

g, (t

(D00 = (6. (0%, X(O).

Lemma 2.1: [10] Assume that the operator f: [0, ) x Y x Y — Y is
continuous. The problem (1) is equivalent to the integral equation



Attractivity for Pantograph Equations with w-type Riemann-Liouville Fractional Derivative 137

y(&) = (W) yo + Jo W' O = w(s)*™ fls, y(s), y(hs))ds, t> 0, (2)
provided the right side is point-wise defined on (0, «).

We introduce terminology, let
Collty, ), V) = {y & Clty, ), Y) :lim (5] = 0).
It is obviously that C, ([t, ), Y) is a Banach space.
We need also following gneralized Ascoli-Arzela theorem [4].

Lemma 2.2: The set H < C ([t,, »), Y) is relatively compact if and only
if the following conditions hold:

1. for any T >0, the functions in H are equicontinuous on [0, T];
2. foranyt € [0, o), H(t) = {y(t) : y € H} is relatively compact in Y;
3. lim,_ [y(t)| =0 uniformly fory € H.

3. MAIN RESULTS
We introduce the following hypotheses:

(H1) | f(t, y, y)| <L(y(t) P lyP for t € (0, 0)and y € Y, L>0,a<p<land s e
R.

(H2) There exists a constant k > 0 such that for any bounded set EC Y,

a( f(t, E, E)) < ko(E),
where ¢ is the Hausdorff measure of noncompactness.

For any y € C ([0, =), Y) and a given n € N*, define an operator U as
follows:

1 o+l ] , N
Uy)(t) = [(W(f)) + ;) Yot fo W (S)(W(t) = () £(s,y(s), y(hs))ds,
t € [0, ). 3)
Since 0 <a < <1, we can choose a y > 0 sufficiently small such that

o+ty-1<0,1-B-yB>0and aa+y—-y3<0.
Let T > 0 sufficiently large such that

MR A

e rap o VO S L o @

Define a set S as follows

S={y®ly € C ([0, ), Y), [(w®)'y(®) <1, for t > T}.
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Itis easy to see that S # & and S is a closed, convex and bounded subset
of C, ([0, ), Y).

Lemma 3.1: Assume that (H1) holds. Then {Uy : y € S}is equicontinuous
and lim___[(Uy)(t)|=0 uniformly fory € S.

Proof: Since o — B — y8 <0, there exists a T, > 0 sufficiently large such
that

1Y e LN@TA-B=18) s €
((\v(t))+nj Iyo|<4, T(l+a_B_1o) (p(1)) < fort>T,

Foranyy e S,and t, t, > T, we get
[(Uy)(t,) — (Uy)(,)l

a-1

<(wen+2) s (wener]
n n
WO W) W) f5,5(5), y0s))| ds

WO W)~ () | fls,y(s), y(hs))| ds

a-1

S[(W(tz))‘i‘lj _ |yo|+((\lf(f1))+lj o]
n n
+L+ [E ) 0w(E) () (uls) P ds

FL+ [P ) w(h) ~w(s) (w(s) P ds

a-1

< [(\y(tz)) + %)1 |vo| + [(\v(tl )+ %j Yol

(LI@PA=B=18) s, L@ (=B =19)
rl+a-p-y9) r'l+a—-p-v9)

(w(t)) "™

Furthermore, for 0 <t <t <T,, we obtain

(Uy)(t,) = (Uy)(E,)l

(e +%j (e +%j

<

|0
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1w~ £ (s) y0s)ds

[ WO W) F(5y(6), y o)

(e +%j (i +%j

M)~ W) W Ow(E) - w(s) s

<

|0

M) w(t) — (s)" " ds

(e +%j (e +%j

+éM[(\v(t1))“ = (w(t,))" +((w(t)) — (w(t))"] +éM((\V(t2)) = (w(t))”

<

|0

—0,ast,>t,
where M = SUP, (0 vcs | ft, y(t), y(\1)).
Forany t, <T, <t, similarly, we obtain
(Uy)(E) - Uy)E)I < (Uy)(E) — (Uy)T]+ (Uy)(T,) - Uy)(E)
—0,ast, —>t,.
Therefore, combining the above argument, it is clear that the family of
functions {Uy : y € S} is equicontinuous.

It remains to verify that lim
we have

|(Uy)(t)| =0 uniformly fory € S. Indeed,

t—>o0

(U)o = ‘((w(ﬂﬂ%} o+ [ VOO ) F(5, 1), y(s)ds

S[W(f))ﬁ) ol L[ WS w0 () (w(s) s

LO(o)[(1— B —y3)
T(1+0—B—70)

—0,ast>T.

Cw(e)

s(<w<t>>+%j“|yo|+
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This shows that lim,__ [(Uy)(t)| = 0 uniformly for y € S. The proof is
completed.

Lemma 3.2: Assume that (H1) holds. Then U maps S into S and U is
continuousin S.

Proof:
Claim 1: U maps S into S.

For y € S, by Lemma 3.1, we know Uy € C ([0, ), Y). On the other
hand, for t > T, by the inequality (4), we have

((w (BN(Uy)(D)]

SOM”YHWMD+%jWJ+ﬂW@mMﬂ—WQVWﬂ&ﬂﬂﬂ&ﬂW%j

SUW“»+%) ol + L) [ W)~ ws)* () s

LT(o)C(1— B —y8)
T(1+a—P-79)

<1,t=>T.

1 a+y-1 o
s@wu»+;) o] + (W)

which implied that US c S.
Claim 2: U is continuous in S.
Foranyy ,yeS ,m=1,2, .. withlim__y =y, wewill show that Uy —

Uy, as m —o. For Ve >0, there exists a T, >0 sufficiently large such that

LT (o) (1-B—7y3) ayprp _ €
T(+a_B-15) (w(T3)) <5

Then, for t>T,, we get
[(Uy, (&) = (Uy)®)
< [ WSO = wE) ™ (LF(5, Y (), Y RS)|+ | (5, y(5), y(s)))ds

<2L[ )t —w(s))* (w(s)) s

- 2LI(o)r (1-B —19)

a-y—B-v3 c.
ra pom) V@) <
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For 0 <t < T, by lebesgue dominated convergence theorem,
we have

(Uy, )(b) ~ Uy
< [ OO W) (|5 Y (5, Y O] +| (5, 1(5), y(5)) s

— 0asm — oo.

Therefore, it is obvious that [|(Uy, ) - (Uy)|| = 0, as m — o, which imples
that the operator U is continuous. This proof is completed.

Theorem 3.3: Assume that (H1) and (H2) hold. Then the problem (1)
admits at least one attractive solution.

Proof: By Lemma 3.2, we know that U : S — S is bounded and
continuous. Next, it will be shown that U < C; ([0, »), Y) is relatively
compact. By Lemma 3.1, we know that {Uy : y € S} is equicontinuous and
lim,  |Uy(t)]=0uniformly fory € S. It remains to verify that forany t € [0,
), {(Uy)(t) : y € S} is relatively compact in Y by using (H2). We omit the
proof of this step as it is similar to that of Theorem 3.1 in [5]. Therefore, by
Schauder’s fixed point theorem, the operator U has a fixed pointy, € S,
with y (f) - 0 as t — . By using the similar method as in the proof of
Lemma 3.1, we know that {y (t)}is uniformly bounded and equicontinuous
on [0, ), and for any ¢ € [0, ), {y (t)} is relatively compact. Therefore, by
Arzela-Ascoli’s theorem, {y ()} has a uniformly converegent subsequence
{ynk}. Moreover, {ynk} satisfies

., (1) =[<w<t>) +ﬂ Yo+ [ VOO - W) F(s,, (5, (5)ds,

k

t € [0, o). (5)

When t #0, let y*(t) =lim
theorem and (3), we get

> Y, (). By Lebesgue dominated convergence

v 5 (0= )y + [ WEWO v Fs,y* (5),y,, 0)ds,

t € [0, ).

which implies that y(f) is an attractive solution of problem (1). The proof is
completed.

In the case where Y =R", we have the following corollary which improve
the result in [3].
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Corollary 3.4: Assume that (H1) holds. Then the problem (1) admits at
least one attractive solution.
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