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A B S T R A C T

The key purpose of the present work is to examine a fractional
order pantograph equation to �type fractional derivative in
RiemannLiouville sense. The existence of globally attractive
solutions for fractionalorder pantograph equations is discussed.
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1. INTRODUCTION

The pantograph equation is a special type of functional differential
equations with proportional delay. It arises in rather different fields of
pure and applied mathematics, such as electrodynamics, control systems,
number theory, probability, and quantum mechanics. Many researchers
have studied the pantographtype delay differential equation using
analytical and numerical techniques [2, 10, 11, 12].

Fractional calculus is applied in different directions of physics,
mathematical biology, fluid mechanics, electrochemistry, signal processing,
viscoelasticity, and finance and in many more. In the branch of fractional
calculus, fractional derivatives and fractional integrals are important
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aspects. Recently, many researchers and scientists have analyzed issues in
this special branch [6, 7, 8, 9]; The aim of this paper is to study the existence
and global attractivity of solutions for a pantograph equation of fractional
order. The main technique used in our considerations is the measures of
noncompactness and a fixed point theorem of generalized AscoliArzela
theorem. Our investigations will be situated in the Banach space of real
functions which are defined, continuous, and bounded. The work on the
attractivity of solutions for fractional differential equations in Banach space
was initiated in [5]. Motivated by this work, here we study the question of
attractivity of solutions for a class of pantograph equations in the sense of
�type RiemannLiouville (RL) fractional derivative given by

;
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where 0 < � < 1, LD�;� is �type RL fractional derivative of order ��� (0, 1),
I1–�;� is �type RL fractional integral of order 1 – �, f : [0, �) × Y × Y � Y is
a continuous function satisfying some hypotheses and y

0
 is an element of

the Banach space Y.

The development of this article is as follows. In Section 2, the �type
fractional derivative is discussed. In Section 3, we estabilish sufficient
conditions for the global attractivity for solutions of problem (1).

2. PREREQUISITES

In the present part, we give some definitions and properties of the fractional
derivative as suggested by [1].

Let ��� (0, 1) and x � L1 ([0, �), Y). The �type RL integral is defined by

(I�;� x(t) = g�(t) *� x(t) = �0
t g�(t – s)x(s)��(s)ds, t > 0,

where * denotes the convolution,

1( ( ))
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t
g t
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�
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� �
For x � C([0, �), Y), the �type RL fractional derivative is defined by

;
1( )( ) ( ( ) ( )).L d

D x t g t x t
dt

� �
�� �� �

Lemma 2.1: [10] Assume that the operator f : [0, �) × Y × Y � Y is
continuous. The problem (1) is equivalent to the integral equation
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y(t) = (�(t))�–1 y
0
 + �0

t ��(t)(�(t) – �(s))�–1 f(s, y(s), y(�s))ds, t > 0, (2)

provided the right side is pointwise defined on (0, �).

We introduce terminology, let

� ��
� � � � �0 0 0([ , ), ) ([ , ), ) : lim ( ) 0}.

t
C t Y y C t Y y t

It is obviously that C
0
 ([t

0
, �), Y) is a Banach space.

We need also following gneralized AscoliArzela theorem [4].

Lemma 2.2: The set H � C
0
 ([t

0
, �), Y) is relatively compact if and only

if the following conditions hold:

1. for any T > 0, the functions in H are equicontinuous on [0, T];

2. for any t � [0, �), H(t) = {y(t) : y � H} is relatively compact in Y;

3. lim
t����y(t)� = 0 uniformly for y � H.

3. MAIN RESULTS

We introduce the following hypotheses:

(H1) � f(t, y, y)��� L(�(t))–� �y�� for t � (0, �) and y � Y, L � 0, � < � < 1 and ���
�.

(H2) There exists a constant � > 0 such that for any bounded set E � Y,

�( f(t, E, E)) ����(E),

where � is the Hausdorff measure of noncompactness.

For any y � C ([0, �), Y) and a given n � �+, define an operator U as
follows:
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Uy t t y s t s f s y s y s ds
n

t � [0, �). (3)

Since 0 < � < � < 1, we can choose a � > 0 sufficiently small such that

��+ � – 1 < 0, 1 – � – �� > 0 and � + � – �� < 0.

Let T > 0 sufficiently large such that

����
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L
y t t

n
 for t � T. (4)

Define a set S as follows

S = {y(t)�y � C ([0, �), Y), �(�(t))��y(t)��� 1, for t � T}.
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It is easy to see that S ��� and S is a closed, convex and bounded subset
of C

0
 ([0, �), Y).

Lemma 3.1: Assume that (H1) holds. Then {Uy : y � S} is equicontinuous
and lim

t����(Uy)(t)� = 0 uniformly for y � S.

Proof: Since � – � – �� < 0, there exists a T
1
 > 0 sufficiently large such

that
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Furthermore, for 0 � t
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where M = sup
t�[0,t2],y�S

 � f(t, y(t), y(�t))�.
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Therefore, combining the above argument, it is clear that the family of
functions {Uy : y � S} is equicontinuous.

It remains to verify that lim
t����(Uy)(t)� = 0 uniformly for y � S. Indeed,

we have
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This shows that lim
t����(Uy)(t)� = 0 uniformly for y � S. The proof is

completed.

Lemma 3.2: Assume that (H1) holds. Then U maps S into S and U is
continuous in S.

Proof:

Claim 1: U maps S into S.

For y � S, by Lemma 3.1, we know Uy � C ([0, �), Y). On the other
hand, for t � T, by the inequality (4), we have
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which implied that US � S.

Claim 2: U is continuous in S.

For any y
m
, y � S, m = 1, 2, ... with lim
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For 0 < t � T
2
,  by lebesgue dominated convergence theorem,

we have

�(Uy
m
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Therefore, it is obvious that ��(Uy
m
) – (Uy)���� 0, as m ���, which imples

that the operator U is continuous. This proof is completed.

Theorem 3.3: Assume that (H1) and (H2) hold. Then the problem (1)
admits at least one attractive solution.

Proof: By Lemma 3.2, we know that U : S � S is bounded and
continuous. Next, it will be shown that U � C

0
 ([0, �), Y) is relatively

compact. By Lemma 3.1, we know that {Uy : y � S} is equicontinuous and
lim

t�� 
�Uy(t)� = 0 uniformly for y � S. It remains to verify that for any t � [0,

�), {(Uy)(t) : y � S} is relatively compact in Y by using (H2). We omit the
proof of this step as it is similar to that of Theorem 3.1 in [5]. Therefore, by
Schauder’s fixed point theorem, the operator U has a fixed point y

n
 � S,

with y
n
(t) � 0 as t ���. By using the similar method as in the proof of

Lemma 3.1, we know that {y
n
(t)} is uniformly bounded and equicontinuous

on [0, �), and for any t � [0, �), {y
n
(t)} is relatively compact. Therefore, by

ArzelaAscoli’s theorem, {y
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(t)} has a uniformly converegent subsequence
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 t � [0, �). (5)

When t � 0, let y*(t) = lim
k�� y

nk
 (t). By Lebesgue dominated convergence

theorem and (3), we get

1 1
0 0

* ( ) ( ( )) ( )( ( ) ( )) ( , * ( ), ( )) ,
k

t

ny t t y s t s f s y s y s ds�� ���� � � � � �� ��
 t � [0, �).

which implies that y(t) is an attractive solution of problem (1). The proof is
completed.

In the case where Y = �n, we have the following corollary which improve
the result in [3].
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Corollary 3.4: Assume that (H1) holds. Then the problem (1) admits at
least one attractive solution.
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